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The deformation and breakup of a slender drop 
in an extensional flow: inertial effects 

By J. F. BRADYT A N D  A. ACRIVOS 
Department of Chemical Engineering, Stanford University, Stanford, CA 94305 

(Received 4 March 1981) 

The analysis of Acrivos & Lo (1978) for the deformation and breakup of a slender drop 
placed symmetrically in an axisymmetric pure straining flow is extended to include 
the effects of the fluid inertia within the drop. It is shown that, although the flow 
pattern within the drop is very complicated, internal inertia always tends to  stabilize 
the drop. This stabilizing effect is, however, so weak that, for all practical purposes, 
it can be ignored. 

1. Introduction 
Since the early experiments of G. I .  Taylor (1934)) it has been known that drops 

whose viscosity is much lower than that of the suspending medium become long and 
slender when subjected to high shear rates and that, if the shear rate is made large 
enough, the drops will break (Grace 1971; Torza, Cox & Mason 1972; Yu 1974). Taylor 
(1964) was the first to exploit the drop’s slenderness in order to describe theoretically 
its deformation and breakup. He studied slender drops in an axisymmetric straining 
motion under conditions of creeping flow and predicted that a drop would break if a 
critical shear rate were exceeded; specifically, if (Epaly)  hi > 0.148, where E is the 
shear rate, $nu3 is the volume of the drop, h = pi fp ( A  < 1 for slender drops), pi and p 
are the viscosities of the drop and of the suspending fluid respectively, and y is the 
coefficient of interfacial tension. More recently, Buckmaster (1972,1973) and Acrivos & 
Lo ( 1978) presented a mathematically systematic development of this slender-body 
approach and confirmed Taylor’s findings. Acrivos & Lo (1978) were also able to 
incorporate in their analysis the effects of inertia in the suspending fluid, but retained 
the assumption of zero Reynolds number inside the drop. I n  addition, Hinch & 
Acrivos (1979) extended the results of Acrivos & Lo (1978) to the case of a drop placed 
in a hyperbolic flow -the experimentally used flow field - and showed that, although 
the drop cross-section is no longer circular, the criterion for breakup is virtually 
identical with that given by Taylor (the critical value of E p h Q / y  being 0.145 as 
opposed to  0.148). Hence the theoretical predictions for axisymmetric flow can be 
compared wihh experiment, and the agreement is very satisfactory (see Hinch & 
Acrivos 1979). 

All these analyses, which provide a very complete picture of the mechanisms 
governing the breakup of slender drops, have assumed that the Reynolds number for 
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the motion inside the drop mas small and that the corresponding inertial effects 
could be neglected. I n  view of the low values OfiCi, however, in some of the experiments 
on slender drops, for example those of Taylor (1934), the calculated Reynolds numbers 
pi Ea2/,ui based on the fluid properties within the drop, with pi being the drop’s density, 
were of order unity or larger a t  the point of breakup, and hence it seems worth while to 
extend the theory and to assess tlhe effects of the inertia inside the drop on its dynamics. 

We begin with the equation for the shape of the drop, placed symmetrically in an 
extensional flow, as derived by Acrivos & Lo (1978): 

R( 2 a t ) ,  t )  = 0, (1.2) 

where R(x,  t )  is the distance of any point on the drop’s surface from the axis of sym- 
metry scaled with ah&, x is the distance along this axis and L the half-length of the 
drop (both scaled with ah-’.), t is the time scaled with E-I, and pi is the pressure within 
the drop scaled with ,uE. Also, G =  E,uahh/yis the appropriate dimensionless shear rate, 
A = pay/,u2ht is an inertial parameter which depends only on the physical properties 
of the external fluid and on the volume of the drop, and their product GA E pEa2/,uhf 
is simply the external Reynolds number with the drop’s half-length as the charac- 
teristic length. I3quation (1.1) is correct to leading order in the slenderness ratio with 
the neglected terms being O(h)  and O(AGA). This shape equation is, however, correct 
for any value of the internal Reynolds number since the latter only affects the internal 
pressure pi .  Aside from a change in notation, (1.1) differs from (5.1) of Acrivos & Lo 
(1978) in that i t  includes a time derivative aR/at and also leaves the internal pressure 
pi unspecified. At zero internal Reynolds number the latter becomes 

(1.3) 

with p ,  an unknown constant, which when substituted in (1.1) gives, a t  steady state, 
equation (5.1) of Acrivos & Lo ( 1  978). 

In  addition to (1.2), which simply requires that the drop close at x = 2 L(t) ,  thc  
solution to ( 1  -1) must satisfy the volume-conservation requirement 

which serves to determine the unknown constant po  appearing in the expression for 
the internal pressure pi .  

We turn next to computing the critical value of G beyond which a steady drop shapc 
cannot exist. 

2. The motion within the drop 
To assess the effects of internal inertia on the drop’s dynamics, we need to determine 

the pressure distribution inside the drop as a function of the internal Reynolds 
number, which requires that we examine the motion inside the drop. On using the same 
non-tlimensionalization as before and defining a new radial co-ordinate r’ = r / R ( x ,  t )  
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i t  is easy to show that the equations of motion inside the drop become, to leading order 
in A (cf. Acrivos & Lo 1978, 5 3) ,  

with 7 = pi/p being the density ratio, and api/&' = O(h).  We see that (2.1) and (2.2) 
are types of boundary-layer equations in which the transverse co-ordinate r' is O( 1 ) .  
The motion inside t,he drop must satisfy a symmetry condition on the axis and lead 
to a velocity that is continuous across the surface. Thus the boundary conditions for 
(2.1) and (2.2) are 

. I  

aR aR 
u = x ,  v=x--+- at r ' =  1, ar at 

(2.3a, b)  

au 
- = v = o  a t  r ' = O .  (2.4a3,b) 
art 

I n  addition to  the drop shape and length, the only parameter of the system that 
Also, u must be odd in x. 

describes the internal niot,ion is the internal Reynolds number 

pi Eu' 
GA7R2 = (?At) R2(x,t), 

which is simply a Reynolds number expressed in terms of the local radius and the 
properties of the fluid within the drop. The appearance of the local radius as the 
characteristic length scale is appropriate because the motion corresponds to that for 
the flow in a long slender tube of slowly varying cross-section. We also see that the 
previous analyses for zero internal inertia refer to 7 ZE 0, in which case it is easy to show 
that R2dpi/dx = 8x, and that (1 .3)  is recovered for the steady internal-pressure 
distribution. Hence, strictly speaking, the previous analyses are only valid when 
p i / p  < 1 ,  while most of the relevant experimental results are for 11 2~ 1 .  

Rather than attempt to solve the full, coupled problem-(1.1), (1.2) and (1.4) for 
the shape and (2.1)-(2.4) for pi-we shall first invoke a simple approximation similar 
to that employed by Acrivos & Lo (1978) in their analysis (cf. their 5 5).  Specifically, we 
represent the drop shape by the quadratic expression 

( 2 . 5 )  

which satisfies (1 .2)  and (1.4), and approximate the internal pressure by 

pi  = PO + &pxz. (2.6) 

As will be seen below, the coefficient /3 can be determined as a function of the internal 
Reynoldsnumber, i.e. as a function of GAT, and hence, combining (2.5) and (2.6) with 
( 1 . 1 ) ,  weobtain a relation between L and the parameters G, A and 7. As shown by 
Acrivos & Lo (1978), when the internal inertia is zero, this approximation gives critical 
shear rates a t  breakup that are within 1-2 yo of the exact values over the entire range 
of A ;  in fact the critical shear rate thereby calculated agrees with the exact result when 
A = 0. Thus this approximation offers the possibility of assessing the effects of internal 
inert,ia by means of a very simple method. 

15-2 
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We next seek an approximate steady-state solution to the appropriate equat,ions, 
by expanding the velocity field in the form 

(2 .7a,  h )  

which, when substituted, together with (2.5) and ( 2 . 6 ) ,  into (2.1)-(2.4), yields, on 
balancing the O(x)  terms, a third-order ordinary differential equation for f with four 
boundary conditions, the fourth serving to determine the pressure coefficient p. I n  fact, 
this ordinary differential equation for f represents an exact similarity solution to the 
full time-independent Il’avier-Stokes equations for the steady flow in a semi-infinite 
tube, which was considered in detail in a separate publication, Brady & Acrivos ( 1  981), 
where i t  was shown that the solution (2 .7)  has the remarkable property that it ceases 
to exist within the internal-Reynolds-number range 10.25 < GA7R2 < 147 (see 
figure 7 in Brady & Acrivos 1981). 

At first glance, the non-existence of similarity solutions for values of the internal 
Reynolds number beyond 10.25 is puzzling because this parameter actually decreases 
with increasing shear rate. This is becaiise the length of the drop grows at least as 
rapidly at G2-cf. equation (3.12) of Acrivos & Lo (1978) -and thus, since the internal 
Reynolds number is based on the drop radius, this Reynolds nnmber decreases more 
rapidly than G-I. The significance of the similarity solution is therefore open to 
question because it would appear that, in a typical experiment involving a gradual 
increase in the shear rate, a state in which the internal Reynolds number equals 10.25 
could only be reached from states of higher Reynolds numbers where steady solutions 
to the similarity equation do not exist. 

The determination of the motion inside the drop when GA7R2 > 10.25 and the 
resolution of the paradox regarding the non-existence of similarity solutions within a 
certain Reynolds-number range hare been discussed elsewhere, Brady & Acrivos 
(1 982), and hence we shall only briefly outline the results. 

By supposing that the longitudinal velocity can be expanded in a Taylor series 
about the origin, we have implicitly assumed that the fluid that is returning from the 
end of the drop exerts no influence on the motion near z = 0. Specifically, the similarity 
solution (2.7) requires that the axial velocity of the returning fluid vanish as x --f 0, 
which can only happen if the internal Reynolds number is sufficiently small. On the 
other hand, when this Reynolds number is large, the viscous forces, which play the 
dominant role in slowing down the returning fluid, are too weak to  overcome the 
momentum of this fluid by the time the latter has reached the origin. Hence, once the 
critical Reynolds number of 10.25 is exceeded, the returning fluid ‘collides’ with its 
mirror image from negative x,  forming, as we have shown (Brady & Acrivos 1882), an 
inviscid region of flow near x = 0, termed the collision region, in which the similarity 
solution no longer applies. 

From a mathematical point of view, (2.1) is not valid in an O(h t )  region of x = 0, 
because when the axial co-ordinate is small it should be scaled in exactly the same way 
as the radial co-ordinate, i.e. with ah: rather than with ah-*. Thus, (2.1) should be 
viewed as applying to the flow in an ‘outer’ region whose solution must match with 
the solution to an equation valid in an ‘inner’ region near x = 0. The problem of 
determining the motion inside the drop is then equivalent, to that  of selecting the 
initial condition fort hc boundary-lajw equation (2.1) that properly takes into account 
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r I-- - 
FIGURE 1. Schematic diagram indicating t.he shape of the drop within the inviscid collision 
region near z = 0. The drop slirface must have a minimum at 2 = 0 arid grow as & as ? + co, 
whew 5 is t,hc axial cw-ordinate non-c~imcnsioiializctl with ah&. 

the presence of the reverse flow. A scheme for accomplishing this was presented by 
Brady & Acrivos (1982), who also obtained numerical solutions to (2.1)-(2.4) (for a 
given R(x,t)) up to Reynolds numbers O(102). Since, in the present case, R(x,t) is 
a priori unknown, tlhe shape equation (1.1) and the equations of motion within the 
drop must be solved together dynamically in time in order to model properly the 
drop’s deformation and the conditions for breakup. 

The flow inside the drop was determined by using the same numerical, finite- 
difference scheme developed in Brady & Acrivos ( 1982). Equations (2.1)-( 2.4) were 
first transformed to a fixed domain by scaling both x and u by L(t) ,  and using r2/R2(x, t )  
as the radial co-ordinate. This eliminated all of the time-dependent terms from the 
boundary conditions and maintained the computational grid fixed as the drop shape 
evolved in time. Rather than solving the complete time-dependent equation, however, 
the terms resulting from this transformation which contained aR/at and dL/dt were 
set equal to zero because this enhanced the stability of the numerical scheme and 
permitted the use of a larger time step, thus saving computing time. Hence, (2.1) was 
solved at  each time step as if the shape R and the length L were fixed, but, of course, 
both were changed from one time step to the next via the shape equation (1.1) (see 
below). Although this approximation is not dynamically correct, it does not affect the 
steady solutions nor did it significantly affect the time evolution of the shape. In  
general, the changes in the shear rate G and the time-step size, particularly near the 
critical shear rate, were such that both aln R/at and d ln Lldt were typically small. 

As we have shown (Brady & Acrivos 1982), when the internal Reynolds number 
exceeds 10.25 and a collision region is present at x = 0, the pressure pi in (2.1) will be 
linear in xi as x + 0, which implies from (1.1) that R should likewise be linear in xh for 
small x. Furthermore, the pressure within the O(h*) thick collision region will vary by 
an O(1) amount, which will cause the drop’s surface to deform. Noting that x = 0, 
r = R(0, t )  is a stagnation point of the flow, it follow~s from Bernoulli’s equation that 
the internal pressure will have a maximum a t  this point. This in turn implies that the 
radius will have a local minimum at x = 0, and therefore the drop surface within the 
collision region should have the shape illustrated in figure 1 .  

Since the variation in the shape is O(1) within the collision region, it is virtually 
impossiblc to carry out an analysis of how the surface deforms. U’e must, therefore, 
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assume that, within the collision region, the surface tension is able to balance the 
pressure variation for all G (the flow outside the drop being essentially stagnant), and 
that the fluid motion in this region does not affect the drop's dynamics. These assump- 
tions are based on the fact that two destabilizing forces are needed to break a drop, 
and that i t  is the overall length L, not any local region of the surface, which is important 
in determining the deformation and breakup. Moreover, the small fraction of the drop's 
length within which the pressureis proportional to xgisreally part of the collision region, 
and it appears logical to assume that this small region will not exert any significant 
effect on the drop's dynamics. Accordingly, we shall not require that the shape R be 
linear in xg for small x (see below). Similarly, it will not be necessary to solve (2.1) with 
sufficient accuracy to resolve the square-root dependence of pi a t  x = 0, which allows 
11s to use a very coarse finite-difference mesh, thereby rendering the computations 
tractable in a finite amount of computing time. Thus, although the collision region is 
needed in order for solutions to exist for the flow inside a drop when the internal 
Reynolds number exceeds 10.25, we shall assume that it pl'ays no direct role in deter- 
mining the conditions for breakup. 

The numerical solution for the motion inside the drop can easily be computed using 
a finite-difference scheme, but greater care is needed in solving the shape equation. 
As we have seen, the zero-internal-Repolds-number solution for the internal pressure, 
(1.3), indicates that the pressure is singular a t  the tip, i.e. pi N 1/R as x - f  L. 
However, the surface-tension force is also proportional to 1/23, and hence these two 
forces balance exactly a t  the tip. This singularity can cause difficulties if a finite- 
difference scheme is used to  compute the shape, and thus we have chosen to  solve the 
shape equation by means of modal functions. This idea of approximating the shape as 
R series of modal functions whose coefficients depend on time was used very successfully 
by Hinch & Acriros (1 980) when studying a slender viscous drop in a simple shear flow. 
For modal functions we shall employ simple polynomials and express R(m, t )  as a power 
series in x of degree il' with coefficients that depend on time, i.e. 

MThen a collision region is present, odd powers of x are needed because the shape is no 
longer simply a function of x2. 

I n  using this polynomial approximation for the shape, we must also approximate 
the pressure pi as a series in x; thus, for the pressure we write 

(2.9) 

wherep,(t) is the unknown constant value a t  the origin. The numerical, finite-difference 
solution of (2.1) gives directly R2dpi/dx a t  each grid point, and through this discrete 
set of points a polynomial can be fitted. The degree of this polynomial was selected so 
as to  minimize the standard deviation of the computed R2 dpildx from their approxi- 
mated values, which normally resulted in a polynomial of degree 6. The numerator and 
denominator of (2.9) were then expanded, integrated and the resulting sum truncated 
to N terms. Upon substituting (2.8) and the resulting expansion for (2.9) into the shape 
equation (1. l),  we develop a system of 2\T coupled equations for the time rate of rhange 
of the Coefficients ~ ? , ( f ) .  
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FIGURE 2 .  Steady dimensionless drop length as a function of the dimensionless shear rate for 

(Solid curve L = 20G' corresponds t o  a bubble in a purely viscous flow.) 
A = 25 from the solution of the shape equation ( 1 . 1 )  : -, 7 = 0; - - -, 7 = 1; ---,  ,$?= 2 .  

The pressure po(l) must be found from the volume-conservation relation (1.4), and 
this can be easily implemented by noting that R, is linear in p,(t), and that 

RR,dx = 0, s:" ' (2.10) 

which follows upon differentiating the volume-conservation relation. Thus we can 
solve ( 1 .1 )  for Rt for two arbitrary values of p,, and then take the linear combination 
which satisfies (2.10). In  performing the integration in (2.10), RR, must not be trunc- 
ated to N terms, but the full 21V - 1 terms kept in order to avoid losing fluid. The fact 
that the volume is conserved, or almost conserved, throughout many time steps 
provides a very good check on the numerical method. Over time, however, some slight 
drift in the volume of the drop was encountered, which is equivalent to  changing G; 
therefore the shape was periodically renormalized in order to insure that the volume 
was conserved. 

The equilibrium drop length and shape for given set of values of the physical para- 
meters G, A and 7, was determined as follows. A t  t = 0 the flow field inside the drop 
and the drop shape were set equal to  their steady solutions at  another set of G, A and y. 
Using the linearity in po( t ) ,  R, was calculated from (1.1) and the new shape computed 
a t  one time step later. The new drop length was then found by locating thenearest 
zero of the polynomial (2.8) by Newton's method. With this new shape and length, the 
flow field and pressure dist,ribution within the drop were recalculated a t  the next time 
step using the numei~icnl scheme described by B~*atly S: A c ~ i r o s  (1982), and thus a new 
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FIGURE 3. Critical shear rates a t  breakup, GAB, from the complete solution of both the shape 
equation and the motion within the drop, as functions of the inertial parameter A for 7 = 0,  1, 2. 

R, could be computed from (1.1). The procedure was then repeated until a steady 
solution was reached for the shape, the length and the flow field within the drop. 

The critical shear rate a t  breakup as a function of A and 7 was found by repeating 
the above calculations for successively large values of C: until a steady solution could 
no longer be attained. This entire process had to  be repeated for various values of the 
two parameters A and 7, which obviously would have required an enormous amount 
of computing. Hence, the critical conditions a t  breakup were only determined for two 
values of the density ratio, 7 = I and 7 = 2, which cox7er the range of greatest practical 
interest. Indeed, it is very dificult to find a combination of fluids for which the fluid 
of very high density (7 9 1 )  also has a very low viscosity ( A  < 1). 

Normally 12 terms were used in hhe polynomial approximation for the shape, 
although some solutions were constructed with as few as 4 and as many as 20 and gave 
drop shapes, lengths and critical shear rates which were within 1-2 yo of those obtained 
with the 12-term expansion. Most of the computational time was consumed in calcu- 
lating the flow inside the drop; thus, a coarse I1 x 21 (axial x radial), finite-difference 
grid was found to be optimal in terms of the trade-off between accuracy and computing 
time. Spot checks with finer computational grids were made periodically, and the 
overall accuracy of the numerical calculations was estimated to be approximately 3 yo. 

Figure 2 shows the deformation relation, i.e. L versus G, for three d u e s  of 7 at  
A = 25. We see that the effects of internal inertia are to stabilize the chop-that is, 
larger shear rates a t  breakup are required when the internal inertia is non-zero - but 
that the effect is weak. Figure 3 shows the complete calculations for the critical shear 
rate a t  breakup as a function of A and 7. The curve corresponding to 7 = 0 represents 
the results of Acrivos & Lo (1978) for zero internal inertia. GAk has been plotted versus 
A bemuse, for thc case of an inertialess bubble (4 = 0, h = 0) in an inertial extensional 
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flow (A += 0 ) ,  the equations should be rescaled so as to eliminate A, and GAk is then the 
appropriately non-dimensional shear rate, At low values of A ,  the inertial effects both 
inside and outside the drop are small, and the drop behaves as if it were purely viscous 
and suspended in a zero-Reynolds-number flow. Thus the critical shear rate a t  breakup 
approaches 0.148 as A --t 0. At the other extreme, when A is large, the inertia of the 
exterior fluid dominates, and the drop breaks when GAi exceeds 0.284. It is only in the 
intermediate range of A that the inertial flow inside is able to partly counterbalance the 
stresses due to the inertia outside and slightly stabilize the drop. 

Thus, we have been able to determine the deformation and critical conditions a t  
breakup when the internal inertia is non-zero. The relatively weak effect of the internal 
inertia implies that one can use the zero-internal-inertia results to predict drop breakup, 
and i t  also helps to explain why the previous theories, which neglect internal inertia, 
are in good agreement with experiment. For density ratios less than 2, the error will be 
a t  most 20 yo, which is not very large considering the inherent difficulty in performing 
the experiments. 

This work was supported in part by the National Science Foundation under grant 
ENG-78-17613 and by N.A.T.O. research grant 1442. 
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